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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Battery Modeling 
for Energy-Aware
System Design

M
any features of modern portable elec-
tronic devices—such as high-speed
processors, colorful displays, opti-
cal/magnetic storage drives, and wire-
less network interfaces—carry a sig-

nificant energy cost. However, advances in battery
technology have not kept pace with rapidly grow-
ing energy demands.1,2

Most laptops, handheld PCs, and cell phones use
rechargeable electrochemical batteries—typically,
lithium-ion batteries—as their portable energy
source. These batteries take anywhere from 1.5 to
4 hours to fully charge, but they can run on this
charge for only a few hours or, in the case of some
newer pocket PCs, up to about 14 hours. 

The battery has thus emerged as a key parame-
ter to control in the energy management of porta-
bles.3-8 To meet the stringent power budget of these
devices, researchers have explored various archi-
tectural, hardware, software, and system-level opti-
mizations to minimize the energy consumed per
useful computation. 

Maximizing the number of useful computations
is effectively a problem of maximizing battery life-
time subject to system performance constraints.
Given a load applied to a battery over a certain
period, information about when the battery fails as
well as its state of charge, or remaining capacity, at
any time can be used to trade off system perfor-
mance for battery lifetime at both the design stage
and runtime, possibly with the user’s active partic-
ipation. For example, an energy-aware picture
phone could let a user trade off image quality with

talk time and the number of photos the phone could
take using the remaining battery capacity.

Incorporating battery-state information into a
lifetime optimization strategy requires a mathe-
matical model that captures battery nonlinearities.
Accurate low-level models9-11 based on the differ-
ential equations that describe the complex phe-
nomena occurring in an electrochemical cell have
been around for about a decade, but solving these
equations can take days. In recent years, however,
researchers have developed high-level battery mod-
els4,5,7,12-15 that reduce simulation time while pre-
dicting relevant variables with acceptable accuracy. 

BATTERY DISCHARGE BEHAVIOR
Because the energy drawn from a battery is not

always equivalent to the energy consumed in device
circuits, understanding discharge behavior is essen-
tial for optimal system design. 

Batteries consist of cells arranged in series, par-
allel, or a combination of both. Two electrodes—an
anode and a cathode, separated by an electrolyte—
constitute each cell’s active material. When the cell
is connected to a load, a reduction-oxidation reac-
tion transfers electrons from the anode to the cath-
ode. This transfer converts the chemical energy
stored in the active material to electrical energy,
which flows as a current in the external circuit.16

As the battery discharges, its voltage drops; when
this voltage falls below a certain cutoff, the battery
disconnects from the load. 

We define capacity in terms of charge units rather
than energy.17 Full charge capacity is the remaining

Computationally feasible mathematical models are now available that cap-
ture battery discharge characteristics in sufficient detail to let designers
develop an optimization strategy that extracts maximum charge.
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capacity of a fully charged battery at the beginning
of a discharge cycle, and full design capacity is the
remaining capacity of a newly manufactured bat-
tery. Further, theoretical capacity is the maximum
amount of charge that can be extracted from a bat-
tery based on the amount of active material it con-
tains, standard capacity is the amount of charge
that can be extracted from a battery when dis-
charged under standard load and temperature con-
ditions, and actual capacity is the amount of charge
a battery delivers under given load and tempera-
ture conditions.3

Like other electrochemical systems, the laws of
thermodynamics, electrode kinetics, and transport
phenomena determine the complex set of equations
that govern battery behavior.18 Thus, as Figure 119

shows, battery discharge behavior is sensitive to
numerous factors including the discharge rate, tem-
perature, and the number of charge-recharge cycles.
Consequently, battery discharge behavior deviates
significantly from the behavior of an ideal energy
source.

Rate-dependent capacity 
Battery capacity decreases as the discharge rate

increases. To illustrate this phenomenon, Figure 2
shows a simplified symmetric electrochemical cell
in which similar processes occur at both electrodes. 

In a fully charged cell (Figure 2a), the electrode
surface contains the maximum concentration of
active species. When the cell is connected to a load,
a current flows through the external circuit; active
species are consumed at the electrode surface and
replenished by diffusion from the bulk of the elec-
trolyte. However, this diffusion process cannot keep
up with the reaction process, and a concentration
gradient builds up across the electrolyte (Figure 2b). 

A higher load current results in a higher concen-
tration gradient9 and thus a lower concentration of
active species at the electrode surface. When this
concentration falls below a certain threshold, which
corresponds to the voltage cutoff, the electro-
chemical reaction can no longer be sustained at the
electrode surface. At this point, the charge that was
unavailable at the electrode surface due to the gra-
dient remains unusable (Figure 2d) and is respon-
sible for the reduction in capacity. 

However, the unused charge is not physically
“lost,” but simply unavailable due to the lag between
reaction and diffusion rates. Decreasing the dis-
charge rate effectively reduces this lag as well as the
concentration gradient. If the battery’s load goes to
zero, the concentration gradient flattens out after a
sufficiently long time, reaching equilibrium again
(Figure 2c). The concentration of active species near
the electrode surface following this rest period makes
some unused charge available for extraction.

System designers can exploit this charge recov-
ery effect to control the discharge rate to maximize
battery lifetime under performance constraints.
However, at sufficiently low discharge rates, the
battery will behave like an ideal energy source. For
example, in Figure 1a, battery capacity will not sig-
nificantly differ from that of the 180-mAh curve
for constant currents below 900 mA.

Temperature effect
Temperature also strongly affects battery dis-

charge behavior. Below room temperature (around
25°C), chemical activity in the cell decreases and
internal resistance increases, reducing full charge
capacity and increasing the slope of the discharge
curve. At much higher temperatures, a decrease in
internal resistance increases the full charge capac-
ity and voltage. However, the higher rate of chem-
ical activity, or self-discharge, can reduce the actual
capacity delivered.16 Unlike the discharge rate, tem-
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perature is not an easily controllable variable in
energy-aware system design.

Capacity fading
Because of their high energy density and capac-

ity, lithium-ion batteries are the popular choice for
many portable applications. However, these bat-
teries lose a portion of their capacity with each dis-
charge-charge cycle. This capacity fading results
from unwanted side reactions including electrolyte
decomposition, active material dissolution, and
passive film formation.16 These irreversible reac-
tions increase cell internal resistance, ultimately
causing battery failure. 

To deal with this problem, system users can
attempt to control the depth of discharge before
recharging. Typically, a battery subjected to shallow
discharges—that is, voltage is still relatively high
when recharging occurs—will be good for more
cycles than a battery subjected to deep discharges—
for example, until the cutoff voltage is reached.

BATTERY MODELS
Researchers have developed numerous compu-

tationally feasible mathematical models that cap-
ture battery behavior in sufficient detail. Physical
models provide a detailed description of the phys-
ical processes occurring in the battery. Empirical
models consist of ad hoc equations describing bat-
tery behavior with parameters fitted to match
experimental data. Abstract models represent a bat-
tery as electrical circuits, discrete-time equivalents,
stochastic process models, and so on. Mixed mod-
els offer a simplified view of the physical processes
with empirically fitted parameters.

Models in each category can be evaluated
according to four basic criteria:

• Accuracy. How closely do the predicted values
of the battery variables of interest—lifetime,
voltage, and so on—match experimental data?
Can the model handle a general case of time-
varying loads? Does it account for the tem-
perature effect and capacity fading?

• Computational complexity. How long do the
simulations take?

• Configuration effort. How many parameters
can the model estimate? Does the model require
in-depth knowledge of battery chemistry?

• Analytical insight. Do the equations describ-
ing the model provide some qualitative under-
standing of battery behavior? Is such insight
useful in exploring ways to trade off lifetime
and performance?

Table 1 summarizes a number of representative bat-
tery models with respect to these criteria and
describes some of their applications. 

Physical models
Physical models are the most accurate and have

great utility for battery designers as a tool to opti-
mize a battery’s physical parameters. However, they
are also the slowest to produce predictions and the
hardest to configure, providing limited analytical
insight for system designers.

Marc Doyle, Thomas F. Fuller, and John
Newman9,10 developed an isothermal electrochem-
ical model that describes the charge and discharge
of a lithium (anode)/polymer (electrolyte)/insertion
(cathode) cell for a single cycle. This model uses con-
centrated solution theory to derive a set of differ-
ential equations that, when solved, provide cell
potential values as a function of time.18

Dualfoil20 is a Fortran program that uses this
model to simulate lithium-ion batteries. The pro-
gram reads the load profile as a sequence of con-
stant current steps, and the battery lifetime is
obtained from the output by reading off the time at
which the cell potential drops below the cutoff volt-
age. Researchers have used Dualfoil to evaluate
other battery models, and have extended the
lithium/polymer/insertion cell model to include
additional factors such as energy balance and
capacity fading.11

Nevertheless, simulating a given lithium-ion bat-
tery can require specifying more than 50 parame-
ters based on knowledge of the structure, chemical
composition, capacity, temperature, and other
characteristics. In addition, solving the model’s
interdependent partial differential equations
requires using complex numerical techniques. As
a result, simulating each load profile can take sev-
eral hours or even days. 
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Table 1. Battery models and applications.

Temperature Capacity Computational Configuration Analytical
Model effect fading Accuracy complexity effort insight Applications

Physical 
Lithium- Yes Yes; support Very high High Very high (> 50 Low  
polymer- for Arrhenius parameters) 
insertion temperature 
cell (Doyle et al.) dependence and 

cycle aging 
added by Rong 
and Pedram 

Empirical  
Peukert’s Yes; needs No Medium (14% Low Low (2 Low  
law recalibration average error parameters) 

for each for constant load,
temperature 8% average error 

for interrupted 
and variable loads)

Battery Yes; needs No Medium Low Low (2 Low Design of 
efficiency recalibration parameters) interleaved dual-
(Pedram for each battery power
and Wu) temperature supply; load 

splitting for 
maximum lifetime 
of multibattery 
systems 

Weibull fit Yes No Medium Low Low (3 Low  
(Syracuse  parameters) 
and Clark) 
Abstract  
Electrical- Yes Yes Medium (12% Medium Medium (> 15 Medium
circuit error predicting parameters) 
(Gold) cell voltage and 

thermal 
characteristics, 
5% error 
predicting cycle 
aging) 

Electrical- Yes No Medium Medium High (> 30 Medium Thermostatic charge
circuit parameters) method: high 
(Bergveld et al.) charging efficiency  
Discrete-time Yes No Medium (1% Medium Medium (>15 Medium Dynamic Power 
(Benini et al.) compared to parameters) Management; 

Hspice multibattery 
continuous-time discharge 
model) 

Stochastic No No High (1%) Low Low (2 Medium Shaping load 
(Chiasserini parameters) (stochastic pattern to exploit 
and Rao) model of load charge recovery 

pattern assumed) 
Mixed  
Analytical No No High (5%) Medium Low (2 High Task scheduling 
high-level parameters) by sequencing and 
(Rakhmatov V/f scaling; analysis 
et al.) of discharge 

methods for 
multibattery systems 

Analytical Yes Yes High (3.5%) Medium Medium (> 15 High
high-level parameters) 
(Rong and 
Pedram)



Empirical models
Empirical models are the easiest to configure, and

they quickly produce predictions, but they generally
are the least accurate. Although they work well in
certain special cases, the constants used have no
physical significance, which seriously limits their
analytical insight.

Peukert’s law. Some models attempt to capture
nonideal discharge behavior using relatively sim-
ple equations in which the parameters match
empirical data. While an ideal battery with capac-
ity C discharged at a constant current would be
expected to have a lifetime L given by C = LI,
Peukert’s law16 expresses this as a power law rela-
tionship, C = LIα. The exponent provides a simple
way to account for rate dependence. However, the
α values for different temperatures must be
obtained empirically, and the fit is not always 
accurate.21

Though easy to configure and use, Peukert’s law
does not account for time-varying loads. Most bat-
teries in portable devices experience widely vary-
ing loads—for example, a pocket PC user may run
a movie player application followed by a notes edi-
tor, which yields a profile with two very different
loads for the battery.

Battery efficiency model. Massoud Pedram and
Qing Wu5 model battery efficiency—the ratio of
actual capacity to theoretical capacity—as a linear-
quadratic function of the load current. They derive
bounds on the actual power consumed for differ-
ent current distributions with the same average
current and show that these bounds depend on the
current’s maximum and minimum values. Among
all distributions with the same mean, a constant
current (least variance) would give the longest 
battery lifetime, and a uniformly distributed cur-
rent (highest variance) would give the shortest.

This model accounts for rate dependence and can
handle variable loads. Researchers have used it,
with slight modifications, to maximize the lifetime
of multibattery systems,6 to minimize the discharge-
delay product in an interleaved dual-battery sys-
tem design,22 and in static task scheduling for
real-time embedded systems.23

Weibull fit model. K.C. Syracuse and W.D.K.
Clark13 used statistical methods to model the dis-
charge behavior of lithium-oxyhalide cells. For a
fixed load and temperature, they noted battery
voltage values at various stages of discharge. They
then fit a Weibull model with three coefficients to
these values to express voltage as a function of
delivered capacity, or charge lost. Syracuse and
Clark estimated the coefficients for different

load/temperature combinations similarly,
and modeled the coefficients’ variation as a
quadratic surface. They used a similar
method to predict battery lifetime as a func-
tion of load and temperature.

Abstract models
Instead of modeling discharge behavior

either by describing the electrochemical
processes in the cell or by empirical approx-
imation, abstract models attempt to provide an
equivalent representation of a battery. Although
the number of parameters is not large, such mod-
els also employ lookup tables that require consid-
erable effort to configure. In addition, despite
acceptable accuracy and computational complex-
ity, these models have limited utility for automated
design space exploration because they lack analyt-
ical expressions for many variables of interest. 

Electrical-circuit and discrete-time models are par-
ticularly useful when compatible models of other
system components—circuit models or VHSIC
Hardware Description Language (VHDL) models—
are available to simulate the entire system in a sin-
gle continuous-time or discrete-time environment. 

Electrical-circuit models. Steven C. Hageman24 and
Sean Gold12 have each proposed PSpice circuits
consisting of linear passive elements, voltage
sources, and lookup tables to model nickel-metal-
hydride and lithium-ion batteries, respectively.
Henk Jan Bergveld, Wanda S. Kruijt, and Peter
H.L. Notten14 likewise devised an electrical-circuit
model of a nickel-cadmium battery by grouping 
the mathematical equations describing the battery
processes.

In Gold’s approach, capacity fading is modeled
by a capacitor CCAP whose capacitance decreases
linearly with the number of cycles. The load cur-
rent I minus a rate-dependence offset flows through
this capacitance. The voltage across CCAP repre-
sents the ratio of delivered capacity to full charge
capacity. This normalized state of charge is then
converted via a lookup table into a voltage VCOMP. 

The temperature effect is modeled as a resistor-
capacitor circuit with two temperature-dependent
sources, VAMBIENT ∝ T and ERISE ∝ I2Rcell, where T
is the ambient temperature and Rcell is cell internal
resistance. The main loop computes the cell volt-
age by superposing the effect of the state of charge,
temperature, and cell internal resistance. 

Electrical-circuit models are inherently continu-
ous-time and, while their simulation times are faster
than those of physical models, they are still time-
consuming. For example, while the number of circuit
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parameters in Gold’s model is not large, configuring
the lookup tables requires substantial effort.

Discrete-time model. Using VHDL, Luca Benini and
colleagues15 approximated the continuous-time
model shown in Figure 3 to a discrete-time model.
Their approach incorporates battery voltage de-
pendence on first-order effects—charge state, dis-
charge rate, and discharge frequency—and the
second-order effects of temperature and internal
resistance. A lookup table models DC-DC con-
verter characteristics. For constant and time-vary-
ing loads, this model predicts lifetime values for
different battery types that are similar to those
of the continuous-time model on which it was
based. Researchers have used the discrete-time
model to compare different Dynamic Power
Management15,25 and multibattery discharge tech-
niques.26

Stochastic model. Carla-Fabiana Chiasserini and
Ramesh R. Rao7 developed a battery model, shown
in Figure 4, that represents charge recovery as a
decreasing exponential function of the state of
charge and discharged capacity. Assuming each
cell’s load to be a pulsed discharge, this model rep-

resents discharge and recovery as a transient sto-
chastic process. 

Each discharge demand of i units causes a tran-
sition to i states lower, while rest periods cause state
transitions to successively higher states. Capacity
gain is expressed as G = Acu/N, where Acu repre-
sents the average number of charge units and N is
the nominal capacity—the charge extractable by a
constant load. Using the Dualfoil simulator, the
researchers obtained curves for G as a function of
the discharge rate for different values of load cur-
rent density and fitted two of the model parame-
ters to match these curves.

This model is useful for representing pulsed dis-
charge, as it can obtain capacity gain for different
types of stochastic loads analytically without sim-
ulation; Chiasserini and Rao reported several ana-
lytical results related to distributing the load
between two cells of a battery package. However,
because it concentrates only on charge recovery,
their model does not account for other battery non-
linearities. Debashis Panigrahi and colleagues27

added a lookup table to incorporate rate depen-
dence, resulting in an abstract model that is both
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fast and capable of producing predictions closely
matching Dualfoil predictions.

Mixed models
Some models combine a high-level representa-

tion of a battery for which experimental data deter-
mines the parameters with analytical expressions
based on physical laws. For example, Daler N.
Rakhmatov and Sarma Vrudhula4 developed a
high-level analytical model that characterizes a bat-
tery using two constants, α and β, derived from the
lifetime values for a series of constant load tests.
The α parameter is a measure of the battery’s the-
oretical capacity, while β models the rate at which
the active charge carriers are replenished at the 
electrode surface.

Starting with Faraday’s law for electrochemical
reaction and Fick’s laws28 for concentration behav-
ior during one-dimensional diffusion in an electro-
chemical cell, these researchers obtained the
following expression relating the load i, battery life-
time L, and battery parameters:

The first term represents the charge the load con-
sumed over the period [0, L), while the second term
represents the charge that was “unavailable” at the
electrode surface at the time of failure L. The
unavailable charge models the effect of the con-
centration gradient that builds up as the flow of
active species through the electrolyte falls behind
the rate at which they discharge at the electrode
surface. 

Battery lifetime predictions using this model
closely match both Dualfoil simulation results and
experimental measurements.29,30 The simulation
time is moderate, and the authors point out that it
is possible to trade off accuracy with speed by
reducing the number of terms in the summation
and approximating the continuous-time load wave-
form i(t) to an N-step staircase (in the extreme case
of a constant load approximation, N = 1). How-
ever, the model does not account for the effect of
temperature and capacity fading on the discharge
characteristics. Compared to the stochastic model,
it has higher computational complexity but
requires less configuration effort and offers more
analytical insight.

Peng Rong and Pedram17 recently proposed a high-
level battery model to estimate remaining capacity
that considers both the temperature effect and capac-
ity fading with successive cycles but assumes a con-

   
 

  

stant current load. They derived an expression
for cell terminal voltage as a function of time
and, using the Arrhenius dependence on tem-
perature of cell kinetics and transport phe-
nomena, obtained an expression for the bulk
properties of the active material as a function
of the temperature. They also derived an
expression for film thickness as a function of
the temperature, discharge rate, and number
of cycles. Using these quantities, they define
state of charge as remaining capacity/full
charge capacity and state of health as full
charge capacity/full design capacity.

These capacity ratios match well with
Dualfoil simulations, and the model effec-
tively captures the effect of temperature and cycle
aging on the battery state of charge. However, the
expressions for remaining capacity are more
involved than those in Rakhmatov and Vrudhula’s
model, requiring configuration of more than 15
different parameters to set up the equivalent bat-
tery. In addition, the constant-load assumption lim-
its the model’s application for optimizing portable
systems with highly variable loads.

APPLICATIONS 
Using one of these models to understand battery

behavior can help system designers devise optimal
battery management algorithms and policies.
Examples of such management include shaping the
discharge current profile under performance con-
straints, developing optimal charging procedures,
and customizing batteries for a given application
under volume and weight constraints.

Battery-aware power supply design
The digital circuits in most modern electronic

devices are designed using complementary metal
oxide semiconductor logic. The supply voltage Vdd

and the threshold voltage Vth characteristic of
CMOS transistors affect the power consumed dur-
ing switching in these circuits. 

To minimize the product of battery discharge and
delay, Wu, Qinru Qiu, and Pedram22 use the battery
efficiency model5 to compute the optimal Vdd. 
They define battery discharge as the ratio between
the actual energy drawn from the battery and the
total energy stored in a new battery. For CMOS
circuits, the delay is proportional to Vdd/(Vdd −
Vth)α, where 1 ≤ α ≤ 2. 

These researchers also propose an interleaved
power supply system, shown in Figure 5, to dis-
charge a pair of batteries with different current-
capacity characteristics. For a total energy
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constraint, they find the distribution of active mate-
rial weight between the two batteries that maxi-
mizes system lifetime and then compare the load
value to a threshold to choose the more efficient
battery. Hspice simulations using random current
distributions show that a dual-battery system offers
a 25 percent improvement in power supply over a
single optimal battery.22

Static task scheduling 
for real-time embedded systems

Drawing on previous work,5,8 Jiong Luo and
Niraj K. Jha23 proposed a battery-aware scheduling
algorithm for real-time embedded systems that sup-
port variable voltages. The algorithm seeks to
reduce the mean value of the discharge current and
shape the discharge profile to maximize battery life-
time. The actual power drawn from the battery is
the cost function to be minimized.

After obtaining an initial feasible schedule with
a list-scheduling algorithm, Luo and Jha used a
global shifting transformation to reduce peak
power consumption. They then applied local trans-
formations involving iteratively sequencing and
shifting tasks, starting at points along the hyper-
period with highest power consumption, to reduce
the cost function. Next, they performed voltage-
clock scaling for processing elements that support
variable voltages by distributing the total available
slack time among all the tasks. They chose speed
and voltage reduction ratios for each task to mini-
mize total energy consumption.

Rakhmatov, Vrudhula, and Chaitali Chakra-
barti21,31 used an analytical model of a battery to
develop a cost function σ(t) of a battery as a func-
tion of the time-varying load i(t). The cost function
is the sum of the actual charge lost to the load l(t)
and the temporarily unavailable charge u(t). The
task-scheduling problem involved assigning start
times tk and voltage-frequency combinations Vk

and φk for each of a set of N tasks to minimize the
cost function of the chosen schedule, subject to the
following constraints:

• the scheduling maintains task dependencies,
• the time by which all tasks complete does not

exceed a deadline B, and
• the battery does not fail before completing all

tasks.

Minimizing the charge lost to the load—or effec-
tively, the energy consumed—after completing all
tasks was the objective of several early approaches
to task scheduling, but the authors point out that
the charge lost is actually a lower bound on σ.
Given the difficulty of deriving an exact solution
to the task-scheduling problem, they proposed
heuristics for the general case starting from initial
solutions corresponding to the minimum-charge,
lowest-power, or highest-power load profile. These
heuristics are based on the provable properties of
the cost function. The researchers subsequently
improved the load profile by inserting rest periods,
voltage up/down scaling, and task sequencing. 

Load-profile shaping for 
multibattery systems

More portable devices such as laptops employ
multiple batteries. Because researchers have found
the traditional method of discharging batteries in
sequence to be suboptimal, there is increasing inter-
est in developing new discharge methods at both
the experimental and analytical level. 

Experimental work. Benini and colleagues26 used a
discrete-time model15 to simulate three different
techniques:

• sequentially discharging each battery until it
fails;

• static switching—discharging each battery for
a fixed duration and in round-robin schedule;
and

• dynamic switching—scheduling the healthiest
battery for discharge at any instant dynami-
cally while the other batteries rest.

For comparison, the authors also simulated a
monolithic equivalent of the multibattery system.
They generally found the lifetimes to follow the
relation monolithic ≥ dynamic switching ≥ static
switching ≥ sequential discharge. They also
observed that, as frequency increased in the static
switching case, the resulting lifetime approached
that of the monolithic battery.

Another effort led by Benini6 incorporates fast
switching between batteries to achieve a “virtual
parallel” discharging of multiple batteries. Model-
ing rate dependence using an approach similar to
that of Pedram and Wu,5 the researchers performed
nonlinear optimization to split the load current
over a set of multiple batteries to maximize system
lifetime. Their proportional current-allocation
scheme was a moderate improvement compared to
equally dividing the load among all batteries. 

Battery
A

Battery
B

DC/DC
converter

VLSI
circuit

Current
comparator Ith

Figure 5. Interleaved
power supply
system. A dual-
battery system
offers a 25 percent
improvement in
power supply over 
a single optimal 
battery.  
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Davide Bruni and colleagues32 implemented the
virtual parallel scheme along with one in which
multiple batteries are connected in series and the
combined voltage down-converted and demon-
strated good improvement in system lifetime for
high current loads.

Analytical work. Chiasserini and Rao7 applied
results from load balancing in computer systems
to distributing the load between two cells of a bat-
tery package. They first considered a delay-free
approach that provides charge units to the load
as soon as they are required, then a delayed
approach that introduces some delay so that the
discharge profile can be shaped to maximize bat-
tery lifetime. They used a stochastic cell model to
analytically show that a best of two approach is
better than the round-robin and random schedul-
ing approaches. The delayed approach is similar
to dynamic switching26 but buffers requests if no
cell is active. The goal is to let each cell recover as
much charge as required to maximize the charge
it delivers. 

The charge delivered using the delayed approach
hypothetically equals the battery’s theoretical
capacity, at the cost of delay. However, assuming
an infinite buffer to hold the load’s requests for
charge units is unrealistic for most portable appli-
cations. Also, many applications, such as the dis-
play, cause a constant drain on the battery; such
background discharge can be significant and yet
cannot be modeled stochastically.

We used a high-level battery model4 to obtain an
upper bound on the lifetime of a multibattery sys-
tem for a given load.33 This study showed that the
lifetime of multiple batteries discharged

• sequentially is no greater than that of an equiv-
alent monolithic battery discharged by the
same load;

• simultaneously (in parallel) is equal to that of
an equivalent monolithic battery discharged
by the same load; and

• by switching at a fixed frequency approaches
that of an equivalent monolithic battery at
high frequencies, when both are discharged by
the same constant load. 

Our results also demonstrate that parallel discharge
performs as well as a monolithic battery, while
switching techniques achieve this performance only
asymptotically. As technology supporting simulta-
neous discharge of multiple batteries is available,34

we conclude that parallel discharge is preferable to
more complex switching techniques.

Battery-aware Dynamic 
Power Management

DPM policies attempt to minimize a sys-
tem’s average power consumption by shift-
ing to low-power modes such as standby,
sleep, and off if the system remains idle after
a certain time-out period. These periods are
based on the overhead due to mode transi-
tions and the energy savings resulting from
the transition. However, DPM policies do not
consider the battery’s state of charge in deter-
mining when to change modes. 

Benini and colleagues25 proposed closed-
loop DPM policies that exploit battery-state
information from a discrete-time battery model15

to change the system state. They implemented a
simple scheme to switch between a “fine” and a
lower-power “raw” play mode on an MP3 player,
based on whether the battery voltage was above or
below a certain threshold. The researchers showed
significant improvements in lifetime with a small
performance penalty.

T he accurate mathematical modeling of batter-
ies is now a mature field, and researchers have
applied such models fairly successfully in 

optimizing system behavior to achieve maximum 
lifetime. Because many of these models are inde-
pendent of the battery chemistry, they should
remain relevant as technology advances. The task
schedulers of portable device operating systems ulti-
mately must incorporate algorithms that dynami-
cally adapt system behavior based on the battery’s
state of charge. Implementation efforts are already
under way—for example, the advanced configura-
tion and power interface specification implemented
in most modern laptops offers power-saving
options.

Research in battery-aware optimization is now
moving from stand-alone devices to networks of
wireless devices—specifically, ad hoc and distrib-
uted-sensor networks. The collaborative nature of
these networks provides ample ground for using
battery-state information to improve the nodes’
efficiency. Battery life is especially important in
such networks because they are often deployed in
potentially hazardous or unreachable conditions
to sense data for reconnaissance, environmental-
monitoring, or health-monitoring purposes.
Developing efficient routing protocols, medium-
access protocols, and discharge-shaping techniques
to maximize battery life are active areas of research
in this field. �

Research in 
battery-aware 
optimization is 

now moving from
stand-alone 

devices to ad hoc
and distributed- 
sensor networks.
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